Mechanical instability of electrode-electrolyte interfaces in solid-state batteries
نویسندگان
چکیده
منابع مشابه
First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge a...
متن کاملIn situ solid-state electrochemistry of mass-selected ions at well-defined electrode-electrolyte interfaces.
Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEIs) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and application of solid-state in situ thin-film electrochemical cells to explore redox and catalytic processes occurring at well-defined EEIs gene...
متن کاملRational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing
The rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substant...
متن کاملMagnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries
Solid-state magnesium ion conductors with exceptionally high ionic conductivity at low temperatures, 5 × 10-8 Scm-1 at 30 °C and 6 × 10-5 Scm-1 at 70 °C, are prepared by mechanochemical reaction of magnesium borohydride and ethylenediamine. The coordination complexes are crystalline, support cycling in a potential window of 1.2 V, and allow magnesium plating/stripping. While the electrochemical...
متن کاملVisualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM.
We report direct visualization of electrochemical lithiation and delithiation of Au anodes in a commercial LiPF6/EC/DEC electrolyte for lithium ion batteries using transmission electron microscopy (TEM). The inhomogeneous lithiation, lithium metal dendritic growth, electrolyte decomposition, and solid-electrolyte interface (SEI) formation are observed in situ. These results shed lights on strat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Materials
سال: 2018
ISSN: 2475-9953
DOI: 10.1103/physrevmaterials.2.105407